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The modeling of flow in porous 
media touches many important 
aspects of our everyday lives, 
from sustaining and protecting 

our subsurface aquifers to enhancing 
the production of petroleum reservoirs. 
Effective simulation of these multiscale 
and multicomponent flows, however, is 
inhibited by fundamental mathematical and 
algorithmic challenges. One such challenge 
is the need to resolve the multiscale structure 
of geological formations; the length scales 
observed in sedimentary laminae range 
from the millimeter scale upward, while the 
simulation domain may be on the order of 
several kilometers. Fully resolved simulations 
are, thus, computationally intractable, 
yet the fine-scale variations of the model 
parameters (e.g., structure and orientation 
of laminae) significantly affect the properties 
of the solution at all scales. This complex 
interaction of different length scales is not 
unique to flows in porous media, but arises in 
many other disciplines, including composite 
material design and analysis, hurricane and 
wild-fire modeling, and atmospheric and 
ocean circulation models.

The objective of a classical upscaling or 
homogenization procedure is to define an 
approximate mathematical model in which 
the effective properties of the medium vary 
on a scale suitable for efficient computation. 
To do this, the macroscopic flow model, with 
parameters that vary on the microscopic (or 
fine) scale, is averaged, in some sense, over 
the microscopic length scales (see [1] and 
references therein). This approach has proved 
useful for modeling single-phase flow in 
mildly heterogeneous porous media; however, 
both strongly heterogeneous media and 
multiphase flow remain problematic. 

In this research, we explore a new multilevel 
upscaling (MLUPS) methodology that 
accurately and efficiently treats the 

multiscale properties of the underlying 
porous medium and flow model. MLUPS is 
based on a generalization of the multigrid 
homogenization (MGH) algorithm developed 
in [1]. The MGH approach builds on the 
observation that the operator-dependent 
variational coarsening central to robust 
multigrid algorithms can also be viewed as an 
upscaling procedure. 

In the MGH procedure, however, the focus 
is on the coarsest scale and the fact that the 
variational coarsening procedure generates 
a complete and self-consistent hierarchy of 
coarse-scale models, with their corresponding 
basis functions, is neglected. In the MLUPS 
method, this hierarchy is created by taking 
the fine-scale discretization and using 
BoxMG (see [1] and references therein) to 
coarsen it to a specified computational scale. 
This operator-induced variational coarsening 
effectively reduces the dimension of the fine-
scale operator by selecting an appropriate 
local, low-energy basis for the coarse-scale. 
The coarse-scale model is solved, with this 
solution yielding a fine-scale representation 
via the multiscale basis functions. This 
approach provides a natural setting for 

Figure 1— 
A realization of a 
strongly heterogeneous 
permeability field with 
variation (from light 
to dark) of 6 orders of 
magnitude (top). Our 
multilevel upscaling 
algorithm constructs a 
self-consistent hierarchy 
of coarse-scale models 
for single-phase 
saturated flow, as well 
as the corresponding 
multiscale basis 
functions, without 
solving any local 
or global fine-scale 
problems. The multiscale 
basis function for the 
center of the domain, 
shown in the lower 
figure, was generated 
using this algorithm. 
The fine-scale structure 
is clearly visible in 
the surface, which 
accurately represents 
the influence of this 
structure on the flow.
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adaptivity, error estimation, and extensions to 
more complex regimes such as unsaturated, 
multiphase, and reactive flows.

We consider a permeability field generated 
by the GSLIB software package [2]. This 
field, shown in the first figure, has a range 
of permeabilities from approximately 10–3 
(light) to 103 (dark). A coarse-scale pressure 
gradient is imposed on a fine computational 
grid of 256 ×256 elements, with impermeable 
boundary conditions on the top and bottom 
edges, to induce flow from left to right. 
We compare the results of the MLUPS 
method with the current state of the art, the 
Multiscale Finite Element Method (MSFEM) 
[3], for a coarse computational scale of  
8 ×     8 elements. 

Errors in both the average flux across the 
line x = x1, q(x1), and the pressure, p(x,y), 
are shown in Table 1. A 2048 × 2048 grid 
calculation, which predicts a constant flux in 
the x-direction of 1.13, is used to represent 
the true solution of the PDE, while an 
important benchmark is the bilinear finite 
element (BLFEM) solution on the  
256 ×256 grid that indicates the “best” 
accuracy that we can, in general, expect at the 
fine computational scale. This computation 
takes 1.94 s on a 1.6 Ghz Athlon machine, 
only slightly more than the 1.88 s required 
by MSFEM, while the MLUPS computation 
requires only 0.18s, less than one tenth of  
the MSFEM cost.
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Table 1— 
Errors in flow 
properties.

Figure 2— 
Both methods follow 
general trends in the 
pressure quite well. 
MSFEM, however, 
exhibits more significant 
localized deviations 
from the true pressure, 
induced by the artificial 
boundary conditions 
used to determine the 
basis functions.

e(q) ∞  2.96 ×10 –2 3.32 ×10 –1  2.08 ×10 –1 

e(q) 2  2.96 ×10 –2 1.55 ×10 –1  1.06 ×10 –1 

e(p) ∞  1.20 ×10 –2 8.38 ×10 –2  9.52 ×10 –2 

e(p) 2 8.92 ×10 –4 1.33 ×10 –2  9.58 ×10 –3 

     Measure         BLFEM             MSFEM          MLUPS
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